2 X Air-cooled Water-cooled Type: Screw 3* Full Load Operating Pressure ^b 125 psig ^b 4 Drive Motor Nominal Rating 450 hp 5 Drive Motor Nominal Efficiency 96.2 percent 6 Fan Motor Nominal Efficiency 91.7&89.1 percent 7 Fan Motor Nominal Efficiency 91.7&89.1 percent 8* 335.7 1928 17.41 200.7 1687 17.23 217.0 1205 18.01 176.0 964 18.26 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 86.25 % 11				MOI	DEL DATA - FO	OR COMPRESSE) AIR		
2 X Air-cooled Water-cooled Type: Screw 3* Full Load Operating Pressure 01 Free # of Stages: 2 3* Full Load Operating Pressure 96.2 psigb 4 Drive Motor Nominal Rating 450 hp 5 Drive Motor Nominal Efficiency 96.2 percent 6 Fan Motor Nominal Efficiency 96.2 percent 7 Fan Motor Nominal Efficiency 91.7 & Stage percent 8* 335.7 1928 17.41 290.7 1687 17.23 217.0 1205 18.01 176.0 96.4 18.26 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 86.25 % 11	1	Manufa	acturer:	Kaish	an Compressor l	JSA			
Image: second secon					Type:		07/12/21 Screw		
Image: system is a second system in the birth party administration of the system is a system in the birth party administration is a system in the birth party administration in the birth party administration is a system in the birth party administration is a system in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administration in the birth party administration is a system in the birth party administration in the birth party administratin the birth party administration in the birth party administrati	2								
3* Full Load Operating Pressure b 125 psigb 4 Drive Motor Nominal Rating 450 hp 5 Drive Motor Nominal Efficiency 96.2 percent 6 Fan Motor Nominal Efficiency 96.2 percent 7 Fan Motor Nominal Efficiency 91.7&89.1 percent 8* 335.7 1928 17.41 200.7 1687 17.23 217.0 1205 18.01 176.0 964 18.26 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 86.25 % 11 Viet Grab to by a stand spresstant of the tab is Sectors 8 Note: YAM Sole, 0 to 25% or maximum capacity 11 Note YAM Sole, 0 to 25% or maximum capacity Note: YAM Sole, 0 to 25% or maximum capacity 11 Stop Stop Stop Stop 12 Stop 150 250 300 130 Stop 150 250 300 141 Stop Stop 250 300 150 250<							2		
4 Drive Motor Nominal Rating 450 hp 5 Drive Motor Nominal Efficiency 96.2 percent 6 Fan Motor Nominal Efficiency 91.7&89.1 percent 7 Fan Motor Nominal Efficiency 91.7&89.1 percent 8 335.7 1928 17.41 290.7 1687 17.23 217.0 1205 18.01 176.0 964 18.26 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 86.25 % 11 90.7 1697 17.23 120.0 1205 18.01 176.0 964 18.26 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 86.25 % 10.0 50 100 200 200 300 10.0 50 100 200 200 300 200 300 11 969 30.0 100 200 200 300 <td>3*</td> <td>Full Lo</td> <td colspan="3">h</td> <td></td> <td>" of Buges.</td> <td></td>	3*	Full Lo	h				" of Buges.		
5 Drive Motor Nominal Efficiency 96.2 percent 6 Fan Motor Nominal Rating (if applicable) 15&4 hp 7 Fan Motor Nominal Efficiency 91.7&889.1 percent 8 Imput Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^{d,d} 8* 335.7 1928 17.41 290.7 1687 17.23 217.0 1205 18.01 176.0 964 18.26 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 kentropic Efficiency 86.25 % 11 $vertopic Efficiency$ 86.25 % 12.0 15.00 100 15.00 200 200 15.00 15.00 100 15.00 200 200 200 200 15.00 15.00 10.00 15.00 200 <td< td=""><td>4</td><td></td><td colspan="3"></td><td>450</td><td colspan="2"></td></td<>	4					450			
7 Fan Motor Nominal Efficiency 91.7&89.1 percent Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 8* 335.7 1928 17.41 290.7 1687 17.23 217.0 1205 18.01 176.0 964 18.26 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 86.25 % 11 $\sqrt[3000]{9}^{\frac{3000}{9}}$ $\sqrt[3000]{100}$ $\sqrt[3000]{100}$ $\sqrt[3000]{200}$ $\sqrt[3000]{200}$ 11 $\sqrt[3000]{9}^{\frac{3000}{9}}$ $\sqrt[3000]{100}$ $\sqrt[3000]{100}$ $\sqrt[3000]{200}$ $\sqrt[3000]{200}$ $\sqrt[3000]{200}$ 11 $\sqrt[3000]{9}^{\frac{3000}{9}}$ $\sqrt[3000]{100}$ $\sqrt[3000]{200}$	5				96.2	percent			
Input Power (kW) Capacity (acfm) ^{a,d} Specific Power (kW/100 acfm) ^d 409.4 2410 16.99 8* 335.7 1928 17.41 200.7 1687 17.23 217.0 1205 18.01 176.0 964 18.26 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 86.25 % 11 $\sqrt[4]{0000}^{500}$ $\sqrt[5000]{0000}^{500}$ $\sqrt[5000]{2000}^{2000}$ $\sqrt[5000]{2000}^{2000}$ 11 $\sqrt[5000]{9000}^{500}$ $\sqrt[5000]{1000}^{500}$ $\sqrt[5000]{2000}^{2000}$ $\sqrt[5000]{2000}^{2000}$ 11 $\sqrt[5000]{9000}^{500}$ $\sqrt[5000]{1000}^{500}$ $\sqrt[5000]{2000}^{2000}$ $\sqrt[5000]{2000}^{2000}$ 11 $\sqrt[5000]{9000}^{500}$ $\sqrt[5000]{2000}^{2000}$ $\sqrt[5000]{2000}^{2000}$ $\sqrt[5000]{2000}^{2000}$ 12 $\sqrt[5000]{9000}^{500}$ $\sqrt[5000]{9000}^{500}$ $\sqrt[5000]{9000$	6	Fan Motor Nominal Rating (if applicable)			15&4	hp			
Input Power (kW) Capacity (acfm) ^{1Al} (kW/100 acfm) ^d 8* 335.7 1928 17.41 290.7 1687 17.23 217.0 1205 18.01 176.0 964 18.26 9* Total Package Input Power at Zero Flow ^{c, d} 0.0 kW 10 Isentropic Efficiency 86.25 % 11 $\sqrt[90]{900}$ 25.00 $\sqrt[90]{900}$ 25.00 $\sqrt[90]{900}$ 25.00 $\sqrt[90]{900}$ $\sqrt[90]{200}$ $\sqrt[90]{200}$ $\sqrt[90]{200}$ 11 $\sqrt[90]{900}$ 25.00 $\sqrt[90]{900}$ $\sqrt[90]{200}$	7	Fan Me	Fan Motor Nominal Efficiency			91.7&89.1	percent		
8* 335.7 1928 17.41 290.7 1687 17.23 217.0 1205 18.01 176.0 964 18.26 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 86.25 % 11 $\sqrt[90]{900}$ $\frac{35.00}{30.00}$ $\frac{35.00}{30.00}$ $\frac{35.00}{30.00}$ 11 $\sqrt[90]{900}$ $\frac{35.00}{30.00}$ $\frac{35.00}{30.$	8*	Input Power (kW)				Capacity (acfm) ^{a,d}			
$\frac{1}{290.7} \qquad \frac{1}{1687} \qquad \frac{1}{17.23} \qquad \frac{1}{17.23} \qquad \frac{1}{17.23} \qquad \frac{1}{217.0} \qquad \frac{1}{1687} \qquad \frac{1}{17.23} \qquad \frac{1}{217.0} \qquad \frac{1}{1205} \qquad \frac{1}{18.01} \qquad \frac{1}{17.23} \qquad \frac{1}{217.0} \qquad \frac{1}{1205} \qquad \frac{1}{18.01} \qquad \frac{1}{17.60} \qquad \frac{1}{964} \qquad \frac{1}{18.26} \qquad \frac{1}{98} \qquad \frac{1}{10} \qquad \frac{1}{1600} \qquad \frac{1}{100} \qquad$		409.4				2410	16.99		
$\frac{217.0}{176.0}$ $\frac{1205}{18.01}$ $\frac{18.26}{18.26}$ 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 86.25 % 10 Isentropic Efficiency 86.25 % 11 $\int_{\frac{1}{2}} \int_{\frac{1}{2}} \int_{$		335.7				1928	17		
Image: 176.0 964 18.26 9* Total Package Input Power at Zero Flow ^{C, d} 0.0 kW 10 Isentropic Efficiency 86.25 % 11 $\begin{bmatrix} 35.00 \\ 90.00 \\ 90.00 \\ 15.00 \\ 10.$		290.7						17.23	
9* Total Package Input Power at Zero Flow C, d 0.0 kW 10 Isentropic Efficiency 86.25 % 11 10 1 1 1 1 11 10 1 1 1 1 11 10 1 1 1 1 11 10 1 1 1 1 11 10 1 1 1 1 11 10 1 1 1 1 11 10 1 1 1 1 11 10 1 1 1 1 11 10 1 1 1 1 11 10 1 1 1 1 11 10 1 1 1 1 11 10 1 1 1 1 11 10 1 1 1 1 11 10 1 1 1 1 11 10 1 1 1 1 11 10 1 1 1 1 11 10 1 1 1 1									
9 10tal Package input Power al Zero Flow 0.0 kw 10 Isentropic Efficiency 86.25 % 11	0*	T 1 D					18		
11 11 11 11 12 13 14 15 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 15.00 11 11 11 11 11 11 11 11 11 11 12 13.00 14.00 15.00 </td <td></td> <td></td> <td colspan="3">Total Package Input Power at Zero Flow</td> <td></td> <td></td> <td colspan="2"></td>			Total Package Input Power at Zero Flow						
Image: transmission of the state state in the CAGI Performance Verification Program, these items are verified by the third party administrator nsult CAGI website for a list of participants in the third party verification program; www.cagi.org Image: transmission of the state state in the case of the test experiment of the consumption of the state state in the case of the test experiment if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity Image: transmission of the state state in the CAGI Performance Verification Program, these items are verified by the third party administrator nsult CAGI website for a list of participants in the third party verification program; www.cagi.org Image: transmission of the state state in the capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data in Section 4 to significant' or "0" on the test report. Image: transmission of the terms "power" and "energy" are synonymous for purposes of this document. Image: transmission of the terms "power" and "energy" are synonymous for purposes of this document. Image: transmission of the terms "power" and "energy" are synonymous for purposes of this document. Image: transmission of the terms "power" and "energy" are synonymous for purposes of this document. Image: transmission of the terms "power" and "energy" are synonymous for purposes of this document. Image: transmission of the terms "power" and "energy" are synonymous for purposes of this document. Image: transmission of the terms "power" and "energy" are synonymous for purposes of this document. Image: transpecified conditions Volume Flo	11								
Capacity (ACFM) Note: Graph is only a visual representation of the data in Section 8 Note: Y-Axis Scale, 10 to 35, + 5kW/100acfm increments if necessary above 35 X-Axis Scale, 0 to 25% over maximum capacity Prime models that are tested in the CAGI Performance Verification Program, these items are verified by the third party administrator nsult CAGI website for a list of participants in the third party verification program: www.cagi.org OTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. DTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Image: Model of the dist dist of the dist dist dist dist dist dist dist dist				,					
Null CAGI website for a list of participants in the third party verification program: www.cagi.org OTES: a. Measured at the discharge terminal point of the compressor package in accordance with ISO 1217, Annex E; ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Volume Flow Rate at specified conditions Volume Flow Rate Model of the specific Energy Zero Flow main fit ³ /min % % % Below 0.5 Below 17.6 +/- 7 0.5 to 1.5 17.6 to 53 +/- 6 +/- 7					Note: Graph is only a vision of the second s	Capacity (ACFM) sual representation of the data in + 5kW/100acfm increments if neces	Section 8	000	
ACFM is actual cubic feet per minute at inlet conditions. b. The operating pressure at which the Capacity (Item 8) and Electrical Consumption (Item 8) were measured for this data c. No Load Power. In accordance with ISO 1217, Annex E, if measurement of no load power equals less than 1%, manufacturer may state "not significant" or "0" on the test report. d. Tolerance is specified in ISO 1217, Annex E, as shown in table below: NOTE: The terms "power" and "energy" are synonymous for purposes of this document. Volume Flow Rate Specific Energy Zero Flow at specified conditions Volume Flow Rate Specific Energy Zero Flow maintering % % % Below 0.5 Below 17.6 +/- 7 +/- 8 0.5 to 1.5 17.6 to 53 +/- 6 +/- 7 +/- 10%		AGI website	e for a list of pa	rticipant	s in the third party veri	fication program:	www.cagi.org	5	
Volume Flow Rate at specified conditionsVolume Flow RateSpecific Energy ConsumptionZero Flow Power $\underline{m^3 / min}$ $\underline{ft^3 / min}$ %%Below 0.5Below 17.6+/- 7+/- 80.5 to 1.517.6 to 53+/- 6+/- 7	Institute	b. c. d.	ACFM is actual of The operating pro- No Load Power, manufacturer ma Tolerance is spec	cubic feet essure at In accord y state "n ified in IS	per minute at inlet condi which the Capacity (Item lance with ISO 1217, An ot significant" or "0" on SO 1217, Annex E, as sh	itions. 8) and Electrical Consumption in E, if measurement of no the test report. own in table below:	on (Item 8) were me load power equals l	easured for this data	
Below 0.5 Below 17.6 +/- 7 +/- 8 0.5 to 1.5 17.6 to 53 +/- 6 +/- 7				s	Volume Flow Rate		Zero Flow		
0.5 to 1.5 17.6 to 53 +/- 6 +/- 7 +/- 10%		· . 1							
+/- 10%		$\underline{m^3 / \min}$	<u>ft³ / mir</u>	1		-	%		
1/-0 1/-0		$\frac{\text{m}^3 / \min}{\text{Below } 0.5}$	<u>ft³ / mir</u> Below 17	<u>1</u> .6	+/- 7	+/- 8			

12/19 R3 This form was developed by the Compressed Air and Gas Institute for the use of its members participating in the PVP. CAGI has not independently verified the reported data.

ROT 031.2